An Unacceptable Solution: Why Deep-Sea Ecosystems Are Not Expendable in the Quest for Clean Energy

Updated: Apr 4, 2021

Edited by Jordan C. Schneider of Sea Sapiens

The deep sea is a mysterious place. The animals living 4,000 meters below the surface have evolved over millennia under crushing pressure, without light, in extreme cold. The ocean floor is therefore not teeming with life, but the life that does exist varies greatly. Researchers and explorers are constantly finding strange new creatures and ecosystems in the depths, but the true extent of this biological diversity remains unknown.

However, we do know that some of the animals and bacteria living in the deep sea hold many secrets that may help humanity. Life below may hold the key for a future vaccine; marine organisms commonly have antiviral properties that are helpful to humans. A red algae, Griffithsia, was found to contain a protein active against MERS, a coronavirus discovered in 2012. It is one of over forty marine compounds currently being studied for antiviral properties.

Deep-sea organisms may also hold a solution to climate change. Four thousand meters down, in the Clarion Clipper Zone, scientists discovered carbon dioxide-absorbing bacteria that account for 10 percent of the carbon dioxide sequestered by the ocean. Modern science could utilize this newly discovered bacteria to sequester the carbon dioxide that is warming our planet and causing climate change.

Unfortunately, many of the policy conversations around utilizing the deep ocean to benefit humanity are not about exploring and protecting the deep sea-life forms that could solve our climate and global health issues; rather, they are about exploiting the minerals within the substrate of the sea floor that provide a home for these creatures.

The bacteria, octopod, sea fans, and fish that make the deep their home live among metal nodules, or rock-like structures that contain manganese, cobalt, copper, and nickel. These nodules are slow-growing, adding only a centimeter every one million years. But the deep-sea mining industry, which has been eyeing these deposits since the 1970s, wants to pull them up in a matter of minutes. The industry’s extraction efforts were hindered for decades by low public appetite for drilling and relatively low economic demand for these metals. Yet that’s all changed with the clean tech boom, which has increased demand for these metals to create batteries for electric cars, solar cells, and more. The World Bank says that to build enough electric storage to mitigate global temperature increases, supplies of nickel and cobalt would have to increase by 1000 percent. Elon Musk has said, "Nickel is our biggest fear for scaling lithium-ion cell production."

The mining industry points to the need for clean technology to justify its deep ocean extraction efforts, and in a greenwashing public relations maneuver that strains credulity, they claim it is the environmentally responsible thing to do.

The fact is that electric systems will not be the environmental saviors the media and corporations portray them to be unless we create electric systems, including batteries, from sustainably sourced materials. Any clean technology solutions we implement should not come at the expense of wiping out entire species or ecosystems, especially those that may hold the key to solving so many of humanity's problems. In this age of advanced innovation, we need to pursue a multi-pronged approach to a sustainable future, not a single environmental initiative with destructive side